Low-dose monobutyl phthalate stimulates steroidogenesis through steroidogenic acute regulatory protein regulated by SF-1, GATA-4 and C/EBP-beta in mouse Leydig tumor cells
نویسندگان
چکیده
BACKGROUND The ubiquitous use of dibutyl phthalate (DBP), one of the most widely used plasticizers, results in extensive exposure to humans and the environment. DBP and its major metabolite, monobutyl phthalate (MBP), may alter steroid biosynthesis and their exposure may lead to damage to male reproductive function. Low-doses of DBP/MBP may result in increased steroidogenesis in vitro and in vivo. However, the mechanisms of possible effects of low-dose MBP on steroidogenesis remain unclear. The aim of present study was to elaborate the role of transcription factors and steroidogenic acute regulatory protein in low-dose MBP-induced distruption of steroidogenesis in mouse Leydig tumor cells (MLTC-1 cells). METHODS In the present study, MLTC-1 cells were cultured in RPMI 1640 medium supplemented with 2 g/L sodium bicarbonate. Progesterone level was examined by I125-pregesterone Coat-A-Count radioimmunoassay (RIA) kits. mRNA and protein levels were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. DNA-binding of several transcription factors was examined by electrophoretic mobility shift assay (EMSA). RESULTS In this study, various doses of MBP (0, 10(-9), 10(-8), 10(-7), or 10(-6) M) were added to the medium followed by stimulation of MLTC-1 cells with human chorionic gonadotrophin (hCG). The results showed that MBP increased progesterone production and steroidogenic acute regulatory protein (StAR) mRNA and protein levels. However, the protein levels of cytochrome P450scc and 3 beta-hydroxy-steroid dehydrogenase (3 beta-HSD) were unchanged after MBP treatment. EMSA assay showed that DNA-binding of steroidogenic factors 1(SF-1), GATA-4 and CCAAT/enhancer binding protein-beta (C/EBP-beta) was increased in a dose-dependent manner after MBP exposure. Western blot tests were next employed and confirmed that the protein levels of SF-1, GATA-4 and C/EBP-beta were also increased. Additionally, western blot tests confirmed the expression of DAX-1, negative factor of SF-1, was dose-dependently down regulated after MBP exposure, which further confirmed the role of SF-1 in MBP-stimulated steroid biosynthesis. CONCLUSIONS In conclusion, we firstly delineated the regulation of StAR by transcription factors including SF-1, GATA-4 and C/EBP-beta maybe critical mechanism involved in low-dose MBP-stimulated steroidogenesis.
منابع مشابه
Vimentin-Mediated Steroidogenesis Induced by Phthalate Esters: Involvement of DNA Demethylation and Nuclear Factor κB
Di-n-butyl phthalate (DBP) and its active metabolite, monobutyl phthalate (MBP) are the most common endocrine disrupting chemicals. Many studies indicate that high-doses of DBP and/or MBP exhibit toxicity on testicular function, however, little attention have been paid to the effects of low levels of DBP/MBP on steroidogenesis. As we all know, the steroidogenic acute regulatory protein (StAR) i...
متن کاملMolecular Mechanisms of Thyroid Hormone-stimulated Steroidogenesis in Mouse Leydig Tumor Cells
Using a mouse Leydig tumor cell line, we explored the mechanisms involved in thyroid hormone-induced steroidogenic acute regulatory (StAR) protein gene expression, and steroidogenesis. Triiodothyronine (T3) induced a ;3.6-fold increase in the steady-state level of StAR mRNA which paralleled with those of the acute steroid response (;4.0-fold), as monitored by quantitative reverse transcriptase-...
متن کاملSteroidogenic factor-1 influences protein-deoxyribonucleic acid interactions within the cyclic adenosine 3,5-monophosphate-responsive regions of the murine steroidogenic acute regulatory protein gene.
De novo synthesis of the steroidogenic acute regulatory protein (StAR) in response to trophic hormonal stimulation of steroidogenic cells is required for the delivery of cholesterol from the mitochondrial outer membrane to the mitochondrial inner membrane and the cytochrome P450 side-chain cleavage enzyme. StAR expression is transcriptionally regulated by cAMP-mediated mechanisms, and we have i...
متن کاملAssessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function.
Recently, we demonstrated that triiodothyronine (T(3)) stimulated steroid hormone biosynthesis and steroidogenic acute regulatory (StAR) protein expression in mLTC-1 mouse Leydig tumor cells through the mediation of steroidogenic factor 1 (SF-1). We now report a dual response mechanism of T(3) on steroidogenesis and StAR expression, and on LH receptor (LHR) expression and binding in mLTC-1 cell...
متن کاملMolecular mechanisms of thyroid hormone-stimulated steroidogenesis in mouse leydig tumor cells. Involvement of the steroidogenic acute regulatory (StAR) protein.
Using a mouse Leydig tumor cell line, we explored the mechanisms involved in thyroid hormone-induced steroidogenic acute regulatory (StAR) protein gene expression, and steroidogenesis. Triiodothyronine (T3) induced a approximately 3.6-fold increase in the steady-state level of StAR mRNA which paralleled with those of the acute steroid response ( approximately 4.0-fold), as monitored by quantita...
متن کامل